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We examine the onset of Rayleigh-Bénard convection in a horizontal fluid layer with an imposed
weak shear flow. Convection patterns in the form of traveling transverse rolls and stationary longi-
tudinal rolls are considered. The investigation is performed in the framework of amplitude equations
which allow for slow variations of the order parameter field both in the streamwise coordinate and
in time. By invoking the concept of absolute and convective instability of the basic state, it is
shown that a nontrivial selection of the most unstable mode takes place. The role of noise upon
the selection process is investigated by considering the spatial growth exponents for both types of

structures.

PACS number(s): 47.54.+r, 47.20.Bp, 47.27.Te, 47.60.+i

I. INTRODUCTION

Rayleigh-Bénard convection (RBC) describes several
phenomena of geophysical and industrial interest [1-3],
and has been studied extensively both theoretically and
experimentally [4]. During recent years, RBC has also
played an important role in studies of nonlinear pattern
forming systems, because the system describes a richness
of bifurcations, pattern stability problems, and transition
routes to chaos [4-6]. The system has the advantage
over many other nonequilibrium systems that theoretical
and experimental results can be compared quantitatively,
because the boundary conditions and stress parameters
of the system can be accurately controlled in laboratory
experiments.

The topic of this article is to investigate the linear on-
set of buoyancy driven convection in a weak horizontal
shear flow uniformly heated from below. RBC combined
with the stability problem of a laminar shear flow (Orr-
Sommerfeld problem) leads to an interesting bifurcation
behavior [7]. Depending on the width of the convection
channel and the rate of the shear flow used in experi-
ments, either traveling convection rolls with axes perpen-
dicular to the flow (transverse rolls, TR’s) or stationary
rolls aligned parallel to the flow (longitudinal rolls, LR’s)
are observed [7-13]. The linear and nonlinear dynamics
of TR’s have been explained successfully by Miiller et al.
[14] using the concept of absolute and convective insta-
bility [15]. Most experimental works have dealt with one
of the two patterns. Only recently, experimental investi-
gations have demonstrated the coexistence of TR’s and
LR’s, albeit in different parts of the channel, or more
complicated time dependent behavior [16,12,13]. Theo-
retical investigations with two coupled amplitude equa-
tions for TR’s and LR’s [17,18] have been used to under-
stand the competitive dynamics of the two structures.
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The linear stability of buoyancy driven convection in a
horizontal shear flow is well understood [19,11,20]. When
the temperature difference across the layer is larger than
a critical value, the conduction state becomes (convec-
tively) unstable, and convection in the form of TR’s or
LR’s is set up. For an idealized situation of a fluid layer
without lateral boundaries, plane wave perturbations in
the form of LR’s turn out to be unaffected by the flow
while TR disturbances are stabilized. A convective pat-
tern in the form of LR’s is thus predicted to appear at a
lower thermal forcing than the TR pattern. However, the
present article shows that the absolute stability bound-
aries must be considered, and from this a natural pattern
selection results favoring TR’s if the flow is sufficiently
weak. In previous publications [11,20] the experimental
observation of TR’s has been motivated by the additional
stabilization due to lateral boundaries, which becomes
remarkable only in narrow channels.

In the present paper we examine in detail the preferred
pattern at the onset of convection. Nonlinear processes
are not discussed. The starting point for the analysis
is the linearized amplitude equations, which have been
derived recently [18]. The absolute and convective insta-
bilities of the basic conductive state are investigated, and
the corresponding implications for the pattern selection
are discussed. We put special emphasis on the question
of which pattern may be detected in an experiment when
noise is present in the system.

II. THE SYSTEM AND THE MODEL
EQUATIONS

We consider RBC in a horizontal fluid layer between
two rigid perfectly heat conducting top and bottom
boundaries. A constant pressure gradient in the lateral
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direction drives a shear flow with strength expressed by
the dimensionless Reynolds number Re= Upd/v. Here Uy
is the flow velocity averaged over the layer thickness d,
and v is the kinematic viscosity of the fluid. The second
dimensionless control parameter is the Rayleigh number
Ra= agd3AT/(kv), which measures the thermal forcing
of the system. Here AT is the temperature difference
between the cooled top and the heated bottom plate of
the channel, a is the coefficient of thermal expansion, g is
the acceleration due to gravity, and « is the thermal dif-
fusivity. We restrict the analysis to weak shear flows, i.e.,
small values of Re, and to Rayleigh numbers close above
the threshold Ra.. For Ra<Ra, there is no convection in
the system. The basic conductive state is characterized
by a plane Poiseuille flow and a temperature profile in-
creasing linearly from the top to the bottom. When Ra
is slightly larger than Ra., a convective cellular motion
is set up and superimposes to the basic state. The gov-
erning equations for this physical system can be found in
(18].

The linear stability problem of the basic state was first
solved by Gage and Reid [19], who considered the case
of a fluid layer without lateral sidewalls. They solved
the linear stability problem by superimposing plane wave
perturbations of the form

¢(Z) ei(Ka:+Ly)+s(K,L,Re,Ra)t (21)
to the base flow. Here (z,y, 2) denote the Cartesian co-
ordinates with the z axis in the direction of the imposed
flow and the z axis vertically upwards, t is the time, ¢(z)
is the eigenfunction satisfying the boundary conditions at
the top and bottom plates, K and L are the respective
wave numbers in z and y directions, and s is the complex
temporal growth rate playing the role of the eigenvalue.
It is found that Ra. depends on Re and the direction of
the lateral wave vector (K, L) [19]. Disturbances in the
form of transverse rolls (K # 0, L = 0) are stabilized
by the flow, and they start growing above the threshold
RaT (Re) with wave number K = K.(Re). Here and in
the following the sub- or superscripts T and L are refer-
ring to TR’s and LR’s, respectively. The stability thresh-
old for rolls with any other wave vector is obtained from
RaZl by virtue of Squire’s transformation [21,19], which
gives

Ra?(Re) = Ral (Recos p). (2.2)

Here ¢ denotes the angle between the wave vector and the
streamwise direction. In the case of LR’s (K =0, L # 0)
the critical values become

Ral = Raf(Re = 0) = Ra,y, L.= K.(Re=0)= Ko,

(2.3)
where Ra.g = 1707.8 and K., = 3.116 are the critical

quantities without a shear low. We now introduce the
reduced Rayleigh number & defined by

¢ = (Ra — Raco)/Raco, (2.4)

and let €7 and e denote the critical thresholds for TR’s
and LR’s, respectively. Figure 1 displays how these crit-
ical thresholds depend on Re. At small flow rates €7

c
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FIG. 1. Sketch of the linear stability boundaries for a chan-
nel without lateral sidewalls. The conductive state is convec-
tively (absolutely) unstable with respect to traveling trans-
verse rolls for ¢ > eI (eI), and with respect to stationary
longitudinal rolls for ¢ > €L (ef). Re*=0 and Re* define
the respective intersections between the convective and the
absolute thesholds. Re* becomes nonzero for a channel with
lateral sidewalls, as shown in the inset figure.

increases quadratically in Re because the stabilization
remains the same when the shear flow reverses direc-
tion. Since eZ(Re)=0 in the absence of sidewalls, the
two curves intersect at Re=Re* = 0. As shown by the
inset of Fig. 1, the stability behavior in a channel of finite
width (i.e., in the presence of sidewalls) is qualitatively
different and leads to a finite value of Re*. This effect
becomes remarkable in narrow channels [11,20].

From the above discussion, which is based on a plane
wave stability analysis, one usually concludes [11,19,20]
that the cellular pattern at the onset of convection is trav-
eling TR’s for Re<Re* but stationary LR’s for Re>Re*.
However, this statement does not strictly apply, because
in an experimental situation the convection channel is of
finite length: Spatially extended perturbations like plane
waves of the form exp(iKz) are thus unrealistic modes,
and an investigation of disturbances which are localized
in the streamwise direction is more appropriate. In this
context the critical threshold eI"Z is also called the con-
vective boundary. For values of € close above it, localized
perturbations are growing in a comoving frame of refer-
ence, but they decay in the laboratory frame. The per-
turbations are advected by the shear flow, and they can
be swept out of the channel before their amplitudes ex-
ceed a detectable limit. Temporally growing amplitudes
in the lab frame are only achievable if the thermal forcing
¢ is lifted above the higher absolute boundary £I°L.

In order to determine the absolute stability and to in-
vestigate the linear growth of small localized perturba-
tions we do not rely on the basic hydrodynamic equations
but perform the investigation in the framework of the
amplitude equations. This is a powerful tool to describe
the dynamics close above the convective threshold. For
e slightly greater than €I° the convective contributions
to the order parameter fields are given by

Apr(z) e K==t Bep(z)e'ley, (2.5)



50 PATTERN SELECTION AT THE ONSET OF RAYLEIGH- . .. 1221

TABLE I. The leading-order Re expansions of the coeffi-
cients of the envelope equations (2.6) for a channel of infinite
lateral extent and rigid perfectly heat conducting top and
bottom boundaries, and for a fluid of Prandtl number 5.8.

Tr = 0.0554 vr = 7.5070Re
T = 0.0554 vr = 7.4350Re
yr = 0.1482 co = 0.0187Re
v = 0.0010Re? c1 = 0.0382Re
AL = 0.0038 Br = 0.0002Re

where A and B represent the respective amplitudes of TR
and LR perturbations. Patterns in the form of oblique
rolls are not considered since they are not observed in
experiments. The amplitudes A,B are supposed to vary
slowly in time and in the horizontal directions = and y.
However, for the sake of simplicity we neglect the y de-
pendence and thus confine our analysis to LR patterns
with a frozen wave vector L = L.. A detuning from this
value is not allowed. The evolution equations for A and
B have been derived in a recent publication [18]. Here
we only need the linearized versions and obtain

T7(8¢ + v78;)A
= (e — eT)(1 + ico)A + yr(1 + ic;)0%A , (2.6a)

7L(8: + v 0,;)B
= (e —e£)B+vL02B + Br83B — A 9:B. (2.6b)

Close above the convective onset these equations reflect
the linear dynamics of TR and LR perturbations as gov-
erned by the basic hydrodynamic equations. Table I gives
the leading-order Re expansion of the coefficients as cal-
culated in [18] for a fluid with a Prandtl number of 5.8.
The coeflicients of Eq. (2.6b) are real, which follows from
the stationary character of the LR instability and the re-
flection symmetry at the plane y = 0. Observe that vr,
vr, BL, and the imaginary parts ¢o and c¢; are odd func-
tions of Re, while the other coefficients are even. This
is a general result of the £ — —z symmetry of the sys-
tem under simultaneous reversal of the low direction (Re
— — Re). Equations (2.6) have been computed [18] for
a fluid layer without sidewalls, where ¢£ = 0. In the
present paper we also restrict ourselves to this idealized
situation. Our predictions will therefore asymptotically
apply to experiments which are performed in convection
channels with a large ratio of width to height, i.e., aspect
ratio I' > 1.

III. PATTERN SELECTION AT THE ONSET OF
CONVECTION

A. Absolute and convective stability of the basic
state

The homogeneous convectionless state of the system is
characterized by the trivial solution of Egs. (2.6):

A=B=0. (3.1)
As typically for open flow systems, this basic state be-
comes convectively unstable beyond a threshold €., but
absolutely unstable above a higher boundary e, [15].
This distinction is based on the different dynamical be-
havior of small localized perturbations: In the convec-
tively unstable parameter region, e, < € < &4, localized
disturbances are growing in a comoving frame of refer-
ence, but they die out at any fixed location in the lab
frame as they are advected by the flow. Localized pertur-
bations start growing in the lab frame only for sufficiently
strong driving. This defines the absolute boundary &,.
We emphasize the importance of considering localized
perturbations in open flow experiments because spatially
extended disturbances, like the plane wave exp(iK ), are
unrealistic modes in geometries which are limited in the
streamwise direction (by an inlet and an outlet). Usually
one determines the convective or critical threshold ¢, by
a conventional plane wave stability analysis (with a real
wave vector). One can also examine the temporal evo-
lution of a localized perturbation in a frame of reference
where the center of the disturbance is at rest [22]. The
latter method, even though mathematically more intri-
cate, has the advantage of giving both the convective and
the absolute threshold by just regarding the evolution of
the perturbations in two different frames. The present
analysis requires a separate consideration of perturba-
tions in the form of TR’s and LR’s.

The stability of the basic state with respect to TR’s is
governed by Eq. (2.6a). For an initial condition of the
form A(z,t = 0) = 6(z) (Dirac’s é function) the problem
is solved by exact integration, giving for ¢t > 0

- \-1/2
Az, t) = (iiﬂ)_exp{s

VAyrmt/Tr

(:L‘ - ’th)zTT
dyp(1+idcl)t [

T
_sc

(1+co)t

(3.2)

The asymptotic time evolution for ¢ — oo is determined

by the sign of the growth exponent Gr, which for any

position z and time ¢ reads

e—€el  (z—vrt)irr

Gr = — >
T 4"/T(1 +61)t2

(3.3)

The maximum value of Gt appears in a frame of ref-
erence moving along the ray z/t = vp. In this frame
TR perturbations are growing if ¢ > 7, thus recovering
the threshold of convective instability as obtained by the
usual plane wave analysis. In order to obtain the abso-
lute stability boundary we solve G = 0 in the lab frame,
i.e., along the ray =/t = 0. Thereby we recover Deissler’s
[23-25] result 7 =T + AeT, with

E UT)2
AcT = (rmvr) 3.4
4yr(1 + c2) (3-4)
Figure 1 shows that for a weak flow eI depends quadrat-
ically on Re since vZ does so.



1222

To get the behavior of LR perturbations we pose the
same initial-value problem for Eq. (2.6b). Since an exact
integration is not possible, we treat this problem pertur-
batively for small flow rates Re, and we use the method of
steepest descent [26] to obtain the asympotic solution for
large values of t. Details of this calculation are relegated
to the Appendix. In any frame of reference where z/t
satisfies the condition O(vy, — z/t) < O(vy), the growth
exponent for LR’s turns out to be

E—Ef 3AL 4

Gy = St [1 + O(Re%)] , (3.5)

TL

where x = (vpt — x)7/(4ALt). The frame which moves
with the center of the disturbance propagates along the
ray ¢/t = vr. Thus, for x = 0 we reobtain the convective
threshold for LR perturbations at ¢ = ¢Z = 0. Moreover,
to find the absolute boundary we solve Gy = 0 in the lab
frame z/t = 0 and get €L = e + Ael, where

32 VLT, % 2
L _ 3AL (vL7L 2
Ak = =L (4AL> [1+0(Re )]

(3.6)

The stability boundaries eI°L, Il

Fig. 1. For small flow rates the absolute boundaries ¢,
and 55 , respectively, increase in the same way as Re?
and Re?/3 increase. Thus we obtain an intersection point
at some nonzero value of Re, which we identify as Ref.
Recall that the quantity Re* corresponds to the intersec-
tion of the two convective boundaries €7 and el Ttis
interesting to note that the intersection point Ref, un-
like Re*, is finite in wide channels. Thus the present
amplitude equation analysis predicts a natural pattern
selection at the onset of convection by which TR pertur-
bations are initiated before LR’s for Re<Ref, while LR’s
are detected first if Re>Ret. This is opposite to earlier
theories [19,11,20] where the transition from the TR to
the LR onset has been associated with Re*. By using
this identification one has concluded from the relation
Re* — 0 as I' — oo that no linear pattern selection takes
place in wide channels: LR’s are always more unstable
than TR’s throughout the whole Re axis [19]. Accord-
ingly, the experimental observation of TR’s could only
be motivated in narrow channels (I' ~ 1), where Re* is
finite [11,20].

It is known that convectively unstable open flow sys-
tems react very sensitively upon external disturbances
[23-25]. The inevitable presence of external perturba-
tions in such experiments (inlet turbulence and/or ther-
mal noise) will make a direct measurement of Re im-
possible or at least very difficult. Therefore, in the next
section we will examine the growth of disturbances which
are caused by external noise.

are depicted in
T

B. The onset of noise-sustained convection

In the above discussion we relate the onset of TR or
LR convection to the absolute stability boundaries £2°L.
This statement strictly applies to (idealized) systems
which are free of any persistent sources of perturbations.
In the present section we investigate how the results of
Sec. IIT A must be modified if the influence of a given
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amount of background noise is taken into account. From
the works of Deissler [23-25] it is known that continu-
ous sources of noise, in convectively unstable open flow
systems, make convection appear even below the absolute
stability boundary. This phenomenon of “noise-sustained
convection” arises from a downstream amplification of
disturbances originating farther upstream. Even though
perturbations and especially thermal noise may be gen-
erated at any position within the channel, those distur-
bances originating from the inlet are amplified most since
they have the largest distance to grow. Consequently, in-
stead of treating a spatially extended noise source, we
counsider a point source located at the inlet. Mathemati-
cally this source can be realized by imposing the bound-
ary conditions

A(z =0,t) = B(z =0,t) = N(t) . (3.7)
For simplicity we consider a complex white noise
(N()N*(t')) = NZ&(t — t') of zero mean (N(t)) = 0.
At some downstream position o, which depends on the
control parameters € and Re, the noise is sufficiently am-
plified for the convective amplitude to exceed a defined
threshold of detection Dy [e.g., take Do = 0.1x (satura-
tion amplitude), or identify Dy with the resolution of the
detector]. The spatial amplification of noise between the
inlet and xq is governed by Egs. (2.6) and obeys an expo-
nential law of the form exp(kz). Corresponding measure-
ments have been performed by Babcock et al. [26,27] and
Tsameret and Steinberg [28] on the Taylor-Couette sys-
tem to detect the onset of noise-sustained Taylor vortex
flow. In RBC onset experiments have been performed by
Hwang and Liu [29] and Chiu and Rosenberger [9]. They
investigate an isothermal fluid (kept at the temperature
of the upper plate) entering the differentially heated test
section of the channel. Thus, depending on the flow rate
Re, the temperature field needs a certain entrance length
before it adopts the linear profile and buoyancy driven
convection may set in. This setup does not directly com-
pare with our model, because our approach assumes a
fluid being perfectly equilibrated to the basic convection-
less state before entering into the channel. The stability
problem related to the experiments in [29,9] has been in-
vestigated by Hwang and Cheng [30]. However, their re-
sult gives no satisfactory quantitative explanation of the
measurements. The reason may be due to the fact that
they ignored the influence of perturbations and did not
discriminate between the absolute and convective nature
of the instability.

We continue by considering the inlet-noise signal as a
superposition of Fourier modes of the form exp(iwt). To
each mode we relate a coefficient with the z dependency
exp(kz). Here k = k(w,e, Re) is the complex spatial
growth exponent with real and imaginary parts to be
denoted by a prime and a double prime, respectively. The
characteristic polynomials for kK and kj are obtained
from Egs. (2.6) by taking the Fourier transform in t. We
determine the value of w for which the spatial growth
rate k' is a maximum by imposing dk’'/Ow = 0. After
some algebra we find that the TR mode with the largest
growth in the downstream direction is characterized by



50 PATTERN SELECTION AT THE ONSET OF RAYLEIGH-. ..

rrvrRy = (e —€2) + yr(1 + A)RF , (3.8a)
k"II," = —CIEIT 3 (38b)
Trwr = (co + ¢1)(e — EZ') . (3.8¢)

Here the tilde indicates values after the maximization
with respect to w. The corresponding characteristic val-
ues for LR’s are

TLULRY = € + 8ALRYE + O(Re?), (3.9a)
&} = £V3&}, + O(Re), (3.9b)
TLoL = FV3e + O(Rez), (3.9¢)

which are obtained by using e = 0 and expanding &,
in powers of small Re with the leading term of O(Re% )
Note that the coefficients vz, and B [which are small of
O(Re?) and O(Re), respectively] do not enter, meaning
that the second and third space derivative terms of Eq.
(2.6b) give no contribution, if the throughflow is suffi-
ciently weak. Equations (3.8a) and (3.9a) implicitly de-
fine the maximum spatial growth rates &7 ; (¢,Re). In
order to describe the downstream growth of small per-
turbations, we have chosen the eigenvalue branch which
gives zero growth at the convective boundary. This choice
guarantees that all Fourier modes are damped in the pa-
rameter region where the basic convectionless state is sta-
ble. For slightly supercritical drive, X < ¢ < €'l the
real part of K7, becomes positive resulting in a narrow
frequency band around @r,1, which is spatially amplified.
This is the principle of selective amplification, recently
discussed by Deissler [24,25]. Mathematically this phe-
nomenon manifests in a space-dependent noise spectrum
governed by

St,p(x,w,e,Re) = N exp{2«7  (w,e,Re)z}. (3.10)
Here St is the temporal Fourier transformation of
the autocorrelation functions (A(z,t)A*(z,t + At)) and
(B(z,t)B*(z,t + At)), respectively. Far enough down-
stream the white inlet noise Sz.1(z = 0,w,e,Re) = NZ
is transformed into a narrow band spectrum which is
sharply peaked around the frequency @r, (¢, Re), where
K 1, is maximum.

In Fig. 2 we present the e-Re control parameter plane
with lines of constant values of the spatial growth rates
R 1, as defined by Egs. (3.8a) and (3.9a). It turns out
that each isoline intersects the respective absolute bound-
ary line eI'L only once, and that the two lines have the
same slope at the point of intersection. To interpret the
isolines physically we can imagine an experiment in which
a detector (e.g., a laser Doppler velocimeter) is located
at a downstream position zo. Then, keeping the flow
rate fixed, we carefully increase € in order to increase
the growth rates «7,;. Depending on whether &7 or
K7, first exceeds the threshold (1/z¢)1n(Do/Np), we de-
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FIG. 2. Thin lines represent paths of constant spatial am-
plification in the e-Re control parameter plane, i.e., K, K, =
const (as indicated in the plot) for TR’s (solid) and LR’s
(dashed). The dotted line joins all points where correspond-
ing isolines for TR’s and LR’s intersect. Thus & > &7 below
this line, and vice versa above. The absolute and convective
stability boundaries are displayed by thick lines.

tect the onset of either TR’s or LR’s. As an example,
let us assume (1/x¢)In(Do/Ny) = 0.3. Then we obtain
from Fig. 2 that the isolines & = K7 = 0.3 intersect
at Re® ~ 1.15. Below this flow rate the first pattern
to occur at onset is TR, while it is LR for Re>Re®. It
would be interesting to test this prediction by a real ex-
periment. We expect the best quantitative agreement
when the measurements are taken in wide convection
cells, where Egs. (2.6) and their coefficients apply best.

Note that the transition point Re® is not uniquely
related to a certain inlet-noise level Ny. This is be-
cause Re® is a function of the parameter combination
(1/z0) In(Do/Np), i.e., the position of the detector zq
and the onset amplitude Dy are also entering the result.
Using /\ka < 1rvp and Trvr ~ Trvg for small Re, it
follows from Egs. (3.8a) and (3.9a) that

(1/20) In(Do/No) =~ Vee/rr -

This approximation is displayed in Fig. 3 (dashed),
together with the exact numerical solution (solid).
Note that the value of Re® increases linearly with
(1/20) In(Dg/Ny) for small Re. Knowing the experimen-
tal parameters Dy and ¢ the measurement of Re® might
give a useful means to estimate the inlet-noise strength
Np.

We now turn to the interpretation of Ei.,’w  and &7 1.
The finite imaginary part K7 and frequency @wr correct
the wave number and frequency of the TR pattern. The
TR mode with the largest spatial amplification there-
fore exhibits a wave number K = (K. + A7) and a fre-
quency Q = (- + &r). Moreover, Egs. (3.9) define a
pair of complex conjugate solutions, so that the LR enve-
lope takes the form B(z,t) o exp(Kyz) cos(Rfx + @rt).
Multiplication with the critical space dependence of LR’s

(3.11)
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FIG. 3. The transition flow rate Re®, at which the pre-
ferred noise-sustained pattern at onset switches between TR
and LR, is a function of the inlet-noise level Ny, the position of
the detector zo, and the definition of the onset amplitude Do.
This relation is approximately given by Eq. (3.11) (dashed).
The solid line is generated numerically from Egs. (3.8a) and
(3.9a).

exp(iL.y), results in a LR pattern whose amplitude is
slowly modulated by a downstream traveling wave. We
mention that time dependent LR patterns have been ob-
served in earlier experiments [9], but they are associated
either with a superimposed TR pattern or with contribu-
tions from upstream turbulence. To our knowledge the
possibility of modulated LR’s has not yet been considered
in the literature. In order to decide this question exper-
imentally local techniques like laser Doppler velocimetry
or hot-wire anemometry are inappropriate. Rather one
needs a global pattern visualization as provided, for in-
stance, by the shadowgraph method.

IV. SUMMARY AND DISCUSSION

In the present paper we investigate the stability of
Rayleigh-Bénard convection subject to a horizontal shear
flow. Absolute and convective stability boundaries are
determined for the two kinds of competing perturbations:
traveling transverse (TR’s) and stationary longitudinal
rolls (LR’s). The analysis is based on the correspond-
ing amplitude equations, which have been derived ear-
lier. Spatially extended plane wave perturbations be-
come unstable for values of the Rayleigh number above
the convective boundaries ¢7°L. Since €L < €T (Re) in
convection channels with large width to height ratios, one
usually has concluded that the preferred pattern at onset
of instability is LR’s. However, in the present paper we
argue that, instead of considering plane waves, localized
perturbations must be regarded which become unstable
above the higher absolute boundaries eI*L(Re). Knowing
€T from earlier work we determine the threshold ¢Z by
an expansion in the flow rate Re. We observe an inter-
section between €I and €L at a finite flow rate Ref. For
flow rates below (above) Re! the analysis predicts TR’s
(LR’s) to appear first at the onset of convection. This,
however, is an idealized result, being valid only in the ab-
sence of perturbations. We therefore examine how these

results are modified in the presence of a persistent noise
source. Quantitative predictions about the observability
of either of the two patterns at the onset of convection
are given.

We emphasize that the results of the present paper
are obtained on the basis of linearized amplitude equa-
tions. Therefore, our predictions apply to regions where
the amplitude of convection is small compared to the sat-
uration value. Conclusions about the prevailing pattern
far downstream or about nonlinear selection and insta-
bility mechanisms cannot be drawn.

Another limitation of the model arises from the restric-
tion to purely t- and z-dependent amplitude equations.
By ignoring the slow horizontal space dependencies trans-
verse to the flow (y dependence) the periodicity of LR’s
is fixed at the critical wave vector L = L.. Calculations
with the z- and y-dependent amplitude equations indi-
cate that the most unstable wavelength of LR’s is larger
than the critical value L.. However, farther downstream
in the saturated convective region this selective effect
will probably be covered by other instability mechanisms
(Eckhaus, zigzag, or cross roll), which delimit the band
of allowed wave numbers. These instability mechanisms,
even though well understood in the classical Rayleigh-
Bénard system, are shifted in the presence of the flow
because the absolute and convective nature of these in-
stabilities must be taken into account. We will treat these
issues in a succeeding publication.
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APPENDIX: THE ABSOLUTE STABILITY
BOUNDARY FOR LR’S

Here we solve the initial-value problem:

(Or +V8,)B=vB+~8?B +302B - 9:B, (Ala)

and B(z,0) =46(z),
(A1b)

B(z,T) -0, as |z| & o0

where §(z) is the Dirac § function. Equation (Ala) fol-
lows from Eq. (2.6b) if

’\L VLTL €~—€L
= —t¢ V: = c7
r TL ’ AL ’ v AL
(A2)
g
Y BV AL

We solve this initial-value problem by the method of
Laplace and Fourier transforms, respectively defined by

f(z,s) = Ax e_’Tf(:t,T)dT,



f(k,T) = /oo e % f(z,T)dz.

— 00
The corresponding inverse transforms are

1 89+i0co _
/ e’T f(z, s)ds,

271 Jg0—ico

f(z,T) =

f(z,T) = % /_ etk F(k, T)dk,

where 3¢ is real, and the contour s = sq lies to the right
of all singular points of f(z, s) in the complex s plane.

By taking the Laplace and Fourier transforms of (A1)
we find

B(k,s) = (s — v +ikV + k2y + ik38 4+ k*)™1, (A3)

which has a simple pole in s. By using the residue theo-
rem, the inverse Laplace transform gives

B(k,T) = exp{(v — ikV — k*y — ik38 — k*)T} . (A4)

Furthermore, applying the inverse Fourier transform to
B(k,T) yields

B(z,T) = 1 ot / e ¥Tdk, (A5a)
2T oo
where
p = k* + k3B + k2y + ik (V— %) (A5b)

In the following we determine asymptotic expressions of
the inverse Fourier transform for large values of T

First we consider the case where (V — z/T) is very
small, i.e., in a frame of reference moving along the ray
z/T = V. When T — oo (or better for large values of
v*T), it follows immediately that

1 uT.

\/'77rTe

Next, when (V — z/T) is nonvanishing, we determine the
integral perturbatively by expanding v in powers of small
values of Re, and using the method of steepest descents
[26]. Below we demonstrate the case where O(V —z/T) =
O(V) = O(Re), which is the actual situation in a lab
frame as T — oo. To calculate the saddle points we
consider the expansions:

B(z,T) ~ (A6)

(v - iT) = Re [4a3 + O(Re?)], (AT7a)

v = Rez [’)/0 + O(Rez)] 5

A

(A7b)
J

YT g — g—¥(kn)T /
Cn

— e—‘f’(kn)T 27['

PATTERN SELECTION AT THE ONSET OF RAYLEIGH-. ..

9" (k)| T

1225

FIG. 4. The saddle points k., (n = 1,2,3), the steep-
est-descent curves (solid), and the steepest-ascent curves
(dashed) of the function —¢ (Eq. A5b) in the complex k
plane. The original integration contour C (along the real
axis) of (A5a) is deformed into the contour Cs + C;.

B = Re [Bo + O(Re?)], (ATc)
where now (z/T') has been included in the leading term,
and ao is positive. Thus the values of k£ at the saddle
points, given by 99 /dk = 0, can be written

k, = Re} [kno +Redk,y + Redkny + O(Rez)] ,

n=1,2,3, (A8a)

where

. = )
kno = 006'(4" 9% y ka1 = “Zﬁo,

(A8b)
kn2 = —L(’Yo + 26%).
" 6kno 8o

Figure 4 displays the saddle points k,,, and the steepest
curves of —1 which are defined by Im[y — ¥(k,)] = 0.
There are two steepest-descent curves (the solid lines C,)
and two steepest-ascent curves (broken lines) emerging
from each saddle point. To solve the integral in Eq. (A5a)
we deform the original contour of integration, which runs
from —oo to oo along the real k axis, to the contour
C3 + C. Taylor-series expansion of 9 about k = k,,, and
evaluating the integral along the steepest-descent curve
Ch, gives

e ’1-'11’”("“)("—"'\)2 T+ - dk

¢itn [1+o (Tl—)] as T — oo, (A9)
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where the double prime denotes the twofold derivative
with respect to k. Furthermore,

%(kn) = Re? [3ikno + Re? By — iRe? (70 + 282) /kno
+0(Re?)]ad, (A10a)

¥" (k) = Re} [kno +Refk,, + O(Rez)] 12kn0, (A10b)

Op = —zarg[y” (kn)].

Finally, by using this result for the contour integration

(A10c)

along C3+C, the asymptotic solution of the initial-value
problem (A1) becomes

_ 2 (v—%n)T T
B(z,T) = (k)| < T e cos(¢; T — VY1)
1
x[1+0(?>] as T — oo,

where v, and 9; denote the real and imaginary parts of
¥ (k1), respectively. We notice that 1, is positive, giving
that the most unstable perturbation is moving along the
ray /T =V [see Eq. (A6)].
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